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ABSTRACT 

Prediction of Diabetes Using Non-Invasive Photoplethysmography (PPG) 
Measurements & Physiological Characteristics 

Type 2 Diabetes (T2D) is a chronic disease affecting millions of people worldwide. 
It is a result of impaired glucose regulation, leading to abnormally high levels of glucose 
causing microvascular and macrovascular problems. The failure to timely identify and treat, 
results in complications such as limb amputations, blindness and heart disease. Busy 
unhealthy lifestyles are a root cause and not much effort undertaken to obtain regular health 
checkups for early T2D detection. 

Photoplethysmography (PPG) is a non-invasive, optic technique mostly used 
towards disease estimation in clinical environments. Recent technological advancements 
have integrated PPG sensors within smartphones and wearables. However, these signals 
suffer from various noise components, which is intensified in signals acquired in routine 
everyday environments. The research analysed the feasibility of short (~2.1s) PPG segments 
in order to address these limitations and identify biomarkers related to T2D. The identified 
biomarkers mainly relate to the vascular system of the body. Several classification 
algorithms were evaluated using cross validation to estimate T2D, focussing on a public PPG 
dataset. Linear Discriminant Analysis (LDA) achieved the highest area under the ROC curve 
of 79% for the estimation of T2D in a setting where healthy individuals, T2D only, T2D 
subjects with hypertension and prehypertension were present.  

It is important to identify relationships between standard medical measures such as 
Fasting Blood Glucose (FBG) and PPG features, for better understanding T2D estimation. 
FBG measurements were collected, and several regression algorithms evaluated using leave-
one-out cross validation to assess the suitability of predicting FBG using PPG features. The 
results were examined using the Clarke’s Error Grid, where 75% & 22.5% of predictions 
were distributed in regions A & B respectively for both ElasticNet and Lasso Regression. 
The results were comparable with long PPG signal based approaches. The suitability of the 
method in practical environments was evaluated using simulated PPG signals with noise and 
motion artifacts. The ElasticNet Regression achieved 70% and 27.5% in regions A & B 
respectively. The analysis of short PPG segments shows promise towards the development of 
an early T2D estimation system in a routine everyday environment. 

  
Keywords: Type 2 Diabetes, Photoplethysmography, Machine Learning, Classification, 
Regression 
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Chapter 1 

INTRODUCTION 

The current phase of human evolution is experiencing exponential growth in the 

fields of engineering and technology which has never been witnessed ever before. As 

responsible researchers it is our duty to identify important needs of the community 

and focus on providing solutions to overcome these challenges. Healthcare can be 

identified as a field of research which has great impact and urgency in the modern-

day society. There are many diseases affecting millions of people worldwide 

resulting in death and suffering. Diabetes is one such chronic diseases which has 

affected 415 million people worldwide by 2015. Due to the current societal trends, it 

is expected that around 642 million people would be affected by the year 2045 [1]. It 

is important to highlight that this rapid onset of diabetes is more prominent in 

developing countries such as Sri Lanka due to the lifestyle changes, dietary changes 

and busy lifestyles of people.  

There are mainly three types of diabetes namely, Type 1 Diabetes (T1D), Type 2 

Diabetes (T2D), and Gestational Diabetes. Nearly 90% of the diabetes population 

suffers through T2D which is the focus of this research. T2D is caused due the 

body’s inability to regulate the increasing glucose levels in the blood due to 

inefficient use of insulin. The abnormally high levels of blood glucose for extensive 

periods of time would lead to complications such as premature heart disease, 

blindness, limb amputations and kidney failure. Hence it is important to identify T2D 

at the onset and ensure proper lifestyle modifications, medical treatment undertaken 

to avoid these adverse consequences. The early symptoms of T2D is less marked and 

usually detected several years after the onset, which results towards all the 

adversities of the disease. This highlights the importance of focusing on research to 

develop early disease estimation tools and methodologies.  
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It is advised by physicians that people undergo routine health checkups and tests 

such as HbA1c in order to identify T2D earlier. However, these best practices are 

rarely practiced due to the costs associated, negligence and the busy lifestyles 

hindering people to focus on their health. This is very unfortunate, where surveys 

estimate that out of the 30.3 million Americans (9.4% of the population) having 

diabetes, 1 in 4 does not know that they have diabetes. In Europe 66 Million people 

(9.2% of the adult population) are affected with diabetes and 38% do not know that 

they have diabetes (1 in 3 people) [2] [3]. The numbers are expected to be worse in 

developing countries where the focus and motivation towards healthcare is very less.  

Such a disease background highlights the importance of developing a low cost, 

convenient system towards the early detection of T2D. Artificial Intelligence & 

Machine Learning (ML) can be identified as a novel paradigm shift in technology in 

many diverse fields. Artificial Intelligence in the field of healthcare presents many 

opportunities towards early disease prediction & diagnosis which would ensure 

massive value creation to humankind. In such light the interest towards early disease 

prediction has received immense attention and motivation. Wearable devices have 

gained immense popularity and massive advancements in the recent years. Many 

advanced sensors have been integrated in day to day devices such as wearables, 

smartphones and smart watches. A significant trend towards utilising these 

technologies to measure key health parameters and provide predictions can be 

identified.   

Photoplethysmography (PPG) sensors have been integrated in many of the identified 

devices, which provides us with great intuition over the physiology of the human 

body. PPG sensors are low cost, non-invasive, optical sensors which can be used to 

measure the blood volume changes in blood vessels through which oxygen 

saturation, blood pressure, cardiac output can be measured [4,5]. Utilising PPG 

sensors along with machine learning has shown great promise in developing 
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intelligent systems capable of providing early insights towards cardiovascular 

diseases such as T2D and hypertension [6]. This research focuses on identifying 

relationships between the photoplethysmography signals, physiological 

characteristics and T2D. The investigation of biomarkers towards the detection of 

T2D utilising machine learning techniques is expected to pave the way towards the 

development of a convenient low-cost method for people to screen themselves for 

early indicators of T2D.  

1.1 Problem 

Diabetes is a chronic widespread disease mainly resulting due to the deficiency in 

glucose regulation. A significant amount of research is conducted in this area to 

address different aspects of the disease such as diabetes detection, management, 

artificial pancreas systems and glucose estimation techniques. However, the focus on 

systems for the early detection of diabetes is relatively recent. The limited T2D 

detection solutions mainly focus on T2D estimation at a clinical setting. It is 

important to explore and develop T2D estimation techniques which can be easily 

used in routine day to day life, which is the main motivator for this research.  

The early detection of T2D is of utmost importance in order to safeguard people 

from the severe complexities of the disease. Complications such as blindness, limb 

amputations and cardiovascular diseases mainly arise due to prolonged periods of 

high blood sugar levels. The early detection of the disease eliminates the risks and 

would significantly reduce costs related to healthcare. Hence the main purpose of 

this research is to design a system to early detect diabetes using readily available data 

of people. Due to the costs and busy lifestyles, people are reluctant to undergo 

routine health checkups to evaluate their risk of T2D. This highlights us the 

importance of designing a system which would be of low cost and great convenience 

to the users to continuously screen themselves. 
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Disease classification is a complex task due to the overlapping disease conditions. 

Thus, it is important to identify unique biomarkers for T2D. The black box approach 

of machine learning algorithms can be identified as a major constraint towards the 

application of ML in the medical domain. Most such medical solutions are hard to 

interpret even though higher accuracies are being presented. It is important to focus 

on developing explainable models which would add great value to physicians and the 

medical community. For an example, in most disease prediction research, standard 

signal processing techniques are used for feature extraction. These extracted features 

do not necessarily convey a physical / biological meaning, or the meanings have not 

yet been identified by research. Thus, the final results lack proper understanding. 

Hence, it is important to focus on features which can be interpreted and work on an 

explanatory approach which would be more feasible towards the practical application 

of the solution. 

1.2 Proposed Solution  

This research focuses on utilising PPG signals and physiological characteristics to 

identify unique biomarkers towards T2D estimation. PPG sensors are currently 

widespread and easily accessible through smartphones and wearable devices 

enabling the development of a convenient solution to the users.  

The photoplethysmography waveforms captures the blood volume changes within 

the blood vessels. Hence, useful physiological insights about the cardiovascular 

system could be obtained through the analysis of PPG signals. PPG signals have 

been mostly used towards disease identification in a controlled clinical environment. 

Hence, these approaches focus on long carefully recorded PPG signals. These PPG 

signals are affected by various kinds of noise and motion artefacts. This issue is 

intensified, when PPG signals are acquired during day to day activities from 

wearables devices. This motivates the focus on methods to analyse PPG signals 

under practical conditions, in order to develop a T2D estimation system in a routine 
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everyday environment. The research focuses on evaluating the feasibility of using 

short PPG signal segments (~2.1s) to address these limitations. This short PPG 

segments based analysis is expected to benefit the development of a convenient 

detection system robust to motion artefacts and noise in a routine everyday 

environment. 

Morphological features of the signal would be extracted and analysed using machine 

learning to identify unique biomarkers for T2D prediction. In comparison to standard 

features extracted through different signal processing techniques, the focus is on 

identifying features which have a biological meaning. This is expected to provide 

better understanding and interpretation towards the final results. Classification 

algorithms will be evaluated to classify people with T2D from healthy controls, in a 

complex overlapping disease environment. The interpretability of the developed ML 

models would be a great benefit to knowledge discovery and understanding. It would 

also enable to bridge the uncertainties between the fields of ML and medicine. The 

obtained results can be mapped to concepts used by physicians towards the diagnosis 

of T2D, to enhance the explainability. FBG measurements can be identified as one of 

the main tests used by physicians to diagnose T2D. The identified PPG features 

would be analysed and regression algorithms would be evaluated towards predicting 

FBG levels. The accuracy in the classification of T2D patients and FBG level 

prediction, is expected to provide a better understanding on the suitability of the 

selected biomarkers towards T2D estimation. Finally PPG signals contaminated with 

noise and motion artifacts would be simulated to identify the accuracy of FBG 

predictions. This would provide valuable insights on the feasibility of utilising short 

PPG segments towards the development of a T2D estimation system for a routine 

everyday environment. 
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1.3 Contributions  

The following contributions are presented in this thesis.  

• Design a practical, convenient system to predict T2D in a routine everyday 

environment.  

• Analysing physiological characteristics and short Photoplethysmography (PPG) 

waveforms segments toward the classification of T2D.  

• Identification and extraction of unique morphological features from the PPG 

waveform. 

• Identify unique biomarkers towards the detection of T2D in a complex disease 

environment.  

• Identify suitable ML algorithms to develop a model for the classification of 

diabetes. 

• Evaluate the relationship between PPG features and clinically accepted 

diagnosis criteria: Fasting Blood Glucose levels, through the analysis of machine 

learning algorithms. 

• Evaluate the feasibility of using short PPG segment based features in a practical 

environment by simulating noise and motion artifact contaminated PPG signals, 

for FBG prediction. 

1.4 Organisation 

The rest of this document is organised as follows. Chapter 2 presents a literature 

review including related work, an overview of the PPG technology and its present 

applications along with a medical study related to T2D. Chapter 3 presents the main 

two research approaches focusing on T2D classification and FBG level prediction 

using PPG signals. The Chapter 4 comprises of the discussion and analysis of the 

obtained experiment results. The document concludes with Chapter 5, presenting the 

final conclusions and recommendations related to the research.  
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Chapter 2 

LITERATURE REVIEW 

In this section different types of systems and tests developed to detect T2D would be 

analysed. These systems encompasses the standard tests in the medical domain and 

the most recent researches in the engineering domain. Next the 

photoplethysmography technology and its latest research applications would be 

discussed. Finally, a medical overview will be presented in order to understand the 

human body and the rationale of biomarker identification related to 

photoplethysmography signals.  

2.1 Related Work 

The first part of this research mainly focuses on developing a system to early detect 

T2D. At present there are different methods in place and researches conducted to 

develop such screening methods. The most prominent approach is the frameworks 

developed in the medical domain through the analysis of T2D populations. The 

Framingham study [7] is one such medical research which has identified guidelines 

to ascertain the risk of T2D based on factors such as Body Mass Index (BMI), 

weight, smoking behaviour, body fat etc. These frameworks would vary between 

different sample populations and could also be affected by other similar overlapping 

diseases (Ex: Hypertension).  

The main T2D detection tests could be identified as HbA1c, Oral Glucose Tolerance 

Test (OGTT), Fasting Blood Glucose (FBG) [1]. Physicians prescribe these tests to 

diagnose T2D, and they can be considered as the gold standard towards diabetes 

estimation. Based on studies different blood glucose ranges have been identified 

which enable the diagnosis. The guidelines for diabetes diagnosing tests are 

presented in Table 2.1. The second part of this research would focus on the prediction 

of FBG utilising PPG waveforms. 
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   Table 2.1 American Diabetes Association Guidelines, Standards of Medical Care 2018.  

Previous research has also focused on methods to analyse Electronic Medical 

Records (EMR) to predict diabetes [8]. Such an approach is irrelevant to the focus 

research problem of developing a user centric, easily accessible T2D detection 

system. Noninvasive Peripheral Artery Tonometry (PAT) and Digital Thermal 

Monitoring (DTM) signals have been used to develop systems capable of predicting 

T2D [9]. However, the use of such sensors in a practical free-living scenario is 

infeasible. Heart Rate Variability (HRV) analysis can be identified to have 

significance importance in T2D prediction, where many research studies have 

focused on utilising ECG signals and PPG signals towards the extraction of HRV to 

predict T2D. HRV has been identified as a promising technique for T2D prediction 

and have been combined with morphological features of the PPG signal for 

predictions. Most recently HRV along with activity data of wearable sensory inputs 

have been effectively used in T2D prediction.  

This research focuses on PPG signal-based approaches towards T2D prediction 

which can be identified as a straightforward physiological signal for T2D prediction. 

Ballinger et al (2018), developed the DeepHeart system which focused on utilising 

medical history, blood test results, previous diagnosis, HRV through PPG signals, 

step counts and other activity data captured by off the shelf wearables towards 

cardiovascular risk prediction. Semi supervised LSTM techniques were used to 

achieve an accuracy of 0.8451 (c-statistic) for diabetes prediction [6]. Swapna et al 

FBG (mg/dL) HbA1c OGTT (mg/dL)

Healthy 70 - 100 < 5.7% < 140

Prediabetes 100 - 125 5.7% - 6.4% 140 - 199

Diabetes ≥ 126 > 6.5% ≥ 200
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(2018) extracted HRV in a clinical setting using ECG recordings and reported an 

accuracy of 90.9% through CNN - LSTM techniques [10]. 

Reddy et al (2017) focused on analysing HRV and long recorded (5 min) PPG signal 

features towards the prediction of T2D. An accuracy of 89% and 90% was obtained 

utilising PPG signals extracted from a pulse oximeter and a Nexus 5 phone camera 

respectively using support vector machines [11, 12]. Moreno et al (2017) achieved an 

accuracy of 69.4% (area under the ROC curve) focusing on HRV, demographic 

features (weight, height, age, gender, BMI, body fat), long recorded PPG features 

and Cepstral Analysis [13]. Random Forest, Gradient Boosting, Linear Discriminant 

Analysis techniques were evaluated, and an activity detection algorithm developed to 

compensate for motion artefacts in long recorded PPG signals.  

HRV can be identified as a key feature towards T2D prediction [14]. However, 

longer PPG signals need to be extracted to obtain a meaningful HRV signal. Main 

constraints towards the extraction of a quality PPG signal are the motion artefacts 

and ambient noise. To overcome such limitations activity detection algorithms have 

been utilised. Using Inertial Measurement Unit (IMU) sensors embedded in wearable 

devices to detect motion would also be a plausible approach to mitigate the effect 

from noise. This research focuses on identifying the best short segments (~2.1s) of 

the PPG signal and utilising the morphological features toward T2D prediction. This 

limits the analysis of the PPG signal based on its temporal characteristics. However, 

medical studies have identified that the amplitude characteristics of the PPG 

waveform possess more information regarding the vascular system, such as vascular 

ageing, arterial stiffness and endothelial dysfunction [15]. In the medical study 

presented in section 2.3 of this document we identify the importance of such 

measurements towards T2D. Hence, the focus on analysing short PPG segments in 

this research.  
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The second part of the research focuses on providing better understanding of the 

extracted features in order to enhance the interpretability of the system. The focus is 

to link the current medical domain diagnostic knowledge with the PPG signals. 

Current physicians mainly focus on HbA1c, FBG measurements towards the 

detection of T2D. Hence it is important to explore the possibility of utilising PPG 

measurements towards the estimation of such quantities. Moreno et al (2011) focused 

on glucose level estimation from long recorded (1 minute) PPG signals, where 

features such as HRV, autoregressive coefficients of the PPG, energy-based features 

were utilised [16]. This research obtained an accuracy of R2 = 0.90 for glucose 

estimation and the distribution of the points on the Clarke error grid was 87.7% in 

Zone A, 10.3% in zone B and 1.9% in zone D. It is important to highlight that most 

of the features analysed in previous research are related to standard measures of a 

signal, and thus do not portray clear biological/clinical relationships towards T2D. 

This hinders the interpretability of the results.  

The Clarke’s error grid  [34] analysis has been established to quantify the clinical 

accuracy of patient blood glucose estimates. The grid breaks down a scatter plot into 

five regions based on the actual and predicted glucose values, which quantifies the 

accuracy. The region A is related with predictions within 20% of the actual value, B 

is associated with points outside 20% but would not lead to improper treatment. 

Region C identifies the points which would lead to unnecessary treatment. Region D 

is related to points which would lead to dangerous failures to detect hypoglycemia or 

hyperglycemia and region E is related to the points which would cause confusion 

between the treatment of hypoglycemia and hyperglycemia.  

The prediction of glucose is a complex task and there is significant variation even 

within the standard clinical tests such as HbA1c and FBG. This has been a main 

motivator towards the error analysis based on the Clark’s error grid identified above 

compared to standard error metrics. The glucose measurements are mainly affected 
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by biological, pre-analytical  and analytical variations. Due to biological variations 

the measured glucose level is expected to vary between 112-140 mg/dL for an 

individual with a FBG of 126 mg/dL. Pre-analytical variations are mainly due to 

medication, posture and sample handling. Analytical variations occur due to bias in 

laboratory equipment. Studies have established that this is less than the biological 

variation. However, a FBG reading of 100 mg/dL could have a bias between the 

range -6 to +7 mg/dL [35]. Hence, the estimation of  blood glucose values is a 

challenging task.  

After the consultation of an Endocrinologist the above findings were justified, and it 

was identified that the person’s blood glucose range is of great importance for their 

current diagnosis, whereas the focus on the actual blood glucose value was minimal. 

It is important to highlight that the glucose value is only one factor towards the 

diagnosis, and many other factors such as age, heredity, weight are considered in the 

final diagnosis. These factors motivated towards the second part of the research 

where FBG values were predicted using PPG features. This helps improve the 

understanding between T2D and identified PPG based biomarkers, and is also 

expected to be valuable in T2D estimation.   

2.2 Photoplethysmography Signal (PPG)  

Photoplethysmography (PPG) can be identified as a non-invasive, inexpensive, optic 

technique which measures the blood volume changes in blood vessels through which 

oxygen saturation, blood pressure, cardiac output could be measured. In recent 

research it has been identified that PPG is a promising technique towards early 

screening of diseases as the PPG waveform possess significant information 

embedded within [4-5]. 

The sensor consists of a Red & IR LED and a photodetector which emits the light to 

the part of the body and captures the reflected waveform. The LED, photodetector 
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setup mainly can be either the transmittance type (the two sensors on opposite sides) 

or the reflective type (sensors on the same side). In both these setups the sensor 

function is based on the light absorption by the blood. The light is absorbed by the 

skin, tissues and the blood stream. The change in the light absorption is related to the 

change in the blood volume. It should be noted that the earlobes, fingertips and toes 

have been identified as the perfect regions for obtaining the PPG signal. Mobile 

phones use the fingertip to capture the signals and the smart wearables mainly focus 

on the wrist of the user. More advanced sensor setups can be seen in modern 

wearables where multiple PPG sensors are incorporated to improve the quality.  

The PPG signals provide the capability of calculating the oxygen saturation of the 

blood by using the blood absorption differences in the IR & Red LED waveforms 

which can identify oxygenated hemoglobin and deoxyhemoglobin. Modern 

researches are being conducted to ascertain whether glucose measurements can be 

obtained through these sensors. The chemical and physical properties in sensor 

design falls outside the scope of this research. However, a machine learning approach 

is followed to analyse the FBG level measurements using the PPG waveform.  

Massive interest towards this technology can be identified in the recent past, where 

researchers from Stanford University & Apple Inc have collaborated in the detection 

of Heart Arrhythmias using the PPG technology [17]. At present the PPG sensors are 

mainly used for Heart Rate estimation, whereas non-invasive BP, Blood Glucose 

estimation and disease prediction are comparatively novel fields of research. The 

latest studies have been able to detect Diabetes with an accuracy of 85% and 

Hypertension at an accuracy of 80% [6].  
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2.3 Medical Study on T2D 

Diabetes is a chronic disease which occurs due to the body’s ineffective use of 

insulin to regulate blood glucose levels. Insulin is a hormone produced by the 

pancreas of the body and is responsible for regulating blood sugar.  It has been 

recorded that 415 million people have been affected by diabetes by the year 2015 and 

it is expected to worsen. Obesity and lifestyle is directly associated with T2D, and is 

widespread in developing countries mainly due to the lifestyle changes. The early 

symptoms of the disease are less marked and as a result it may lead to microvascular 

and macrovascular complications. Macrovascular complications include 

cardiovascular disease, heart attacks and strokes. Microvascular complications are 

due to the damage of small blood vessels. It includes damages to the eye 

(retinopathy) which can lead to blindness, the kidneys (nephropathy) leading to 

neural failure and nerves (neuropathy) leading to diabetes foot [18].  

The PPG technology focuses on capturing the changes in the blood flow through the 

blood vessels. This technique is capable of capturing insights on the vascular system 

such as vascular ageing, endothelial dysfunction, arterial stiffness. Endothelial 

dysfunction is identified as a precursor of diseases such as diabetes, hypertension and 

renal failure [15]. The research focuses on utilising this relationship to explore 

relationships between T2D and features extracted from the PPG waveform.  

An early prediction system requires the identification of potential biomarkers 

towards T2D prediction. Since the early symptoms of T2D are less marked and 

hardly distinguishable to the naked eye, we analyse the minute changes in the 

vascular system utilising the analysis of PPG signals. Diabetic retinopathy is a 

widely researched area which focuses on predicting T2D analysing the blood vessels 

in the human eye. This has been used as a diabetes screening technique. 
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Numerous medical studies have developed frameworks to predict the risk of T2D. 

However, there is a great disease complexity due to similar symptoms across a 

variety of diseases. Diabetes, hypertension, renal failure all can be identified as 

stemming from the metabolic syndrome. It is important to analyse the PPG 

waveforms focusing on different disease combinations and demographic 

characteristics in order to develop a unique disease profile. The relationship between 

HRV and T2D was identified in the previous section. Previous research has identified 

that the HRV decreases with age and the microvascular injuries to the blood vessels 

could reflect a change in the HR dynamics [13]. However due to the limitations in 

extracting quality continuous PPG waveforms in routine everyday environments, this 

research focuses on amplitude based (focussing on a single pulse) vascular 

characteristics arising from microvascular injuries in T2D.  
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Chapter 3 

METHODOLOGY 

This section presents the methodologies proposed to address the identified research 

problem. The first research approach focuses on identifying suitable biomarkers for 

the classification of T2D. Next, FBG levels are analysed using PPG features to 

evaluate the possibility of FBG estimation. 

The two methodologies presented, focus on analysing short segments of the PPG 

signal compared to other identified approaches in section 2. Single pulse PPG 

segments of the waveform will be identified based on a quality criteria, and features 

extracted towards the estimation of T2D and FBG level estimation. This pulse 

segment based focus is expected to be effective in the practical implementation with 

motion artifacts and noise in a routine everyday environment, compared to long 

signal analysis done in controlled clinical settings. The feasibility of using short PPG 

segments, is explored through the simulation of noise and motion artifacts 

contaminated PPG signals for FBG prediction. 

3.1 Identifying Biomarkers for T2D and Classification 

A classifier requires meaningful features in order to uncover the underlying 

relationships to perform a classification task. The development of a classification 

system to early estimation of T2D can be identified as the primary aim of this 

research. The physiological parameters of patients and features related to the PPG is 

extracted and analysed to identify the features related T2D.  

Generally, standard features are extracted from signals towards analysis. Various 

energy metrics, auto regressive parameters, frequency parameters are some such 

features. Even though these features are capable of representing the signal, the 
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physical meaning of the features might not be clear, thus the meaning of 

classification models are harder to understand. This research identifies features 

which have biological / clinical meaning in order to provide more insights into the 

final results. T2D affects the vascular system of the body as identified in section 2.3. 

Through careful analysis of previous medical research in different disease domains, 

well established morphological features related to the vascular system of the body 

have been identified for this research.  

The identified features are tested against multiple machine learning algorithms, and 

hyper parameters tuned to identify patterns and relationships for T2D estimation. The 

evaluation of the different models is conducted based on the area under the ROC 

curve which considers both the true positive rate and the false positive rate of the 

binary classification problem. 

3.1.1 Dataset Description 

The public datasets available in the domain of diabetes including PPG waveforms is 

very minimal. This research was conducted based on a recent open source clinical 

trial dataset by Liang, Yongbo, et al [19], which focused on blood pressure 

estimation using short photoplethysmography signals. The dataset mainly comprised 

of healthy, diabetes, hypertension subjects. Subjects with cerebral infarction and 

cerebrovascular disease were also present in the dataset and were excluded from this 

study. Healthy, diabetes & hypertension subject's data was selected, where signal 

processing and feature extraction algorithms were used to extract the target features. 

After the elimination of erroneous signals, a total of 150 subjects comprising of 51 

healthy, 39 prehypertension, 28 hypertension and 32 diabetes patients were selected 

for analysis.  

It is important to highlight that the dataset was imbalanced with comparatively fewer 

number of diabetes only subjects. However, diabetes subjects with hypertension and 
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prehypertension were present which indicates the strong interconnection between the 

diseases. Diabetes is considered a risk factor for hypertension, and both the diseases 

derives from the metabolic syndrome. This signifies the importance of estimating 

T2D in a complex, practical disease setting. The analysis of other diseases related to 

the cardiovascular system would further enhance the proposed system. A summary of 

the analysed subjects is presented in Table 3.1.  

Table 3.1 Subject summary of the target dataset. 

3.1.2 Data Preprocessing & Feature Extraction 

Identifying the biomarkers uniquely related to T2D is of utmost importance, in order 

to utilise classification algorithms in an environment where multiple similar diseases 

are present. Mainly two sets of features are identified in this research. The 

physiological features such as age, gender, height, weight, BMI were extracted from 

the selected dataset, and body fat percentage calculated utilising the formula given in 

[20] as an additional physiological feature.  

The PPG signals of the identified subjects were utilised to extract the second set of 

features. The signals in the selected dataset was collected at a sample rate of 1KHz 

using a 12-bit ADC, and a hardware filter design of 0.5 - 12 Hz bandpass. The 

dataset comprised of three short signal segments (~2.1) for each subject. The best 
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Subject Description Number of Subjects

Healthy 51

Prehypertension Only 39

Hypertension Only 28

Diabetes Only 9

Diabetes & Prehypertension 16

Diabetes & Hypertension 7

Total 150



signal was selected based on the Skewness Signal Quality Index (SSQI) as identified 

in a previous study [21]. Another previous study identified that the 8th Order 

Chebyshev II filter was appropriate for removing noise in a PPG signal [22]. Hence 

the same filter design was utilised for noise removal. 

Focusing on the processed signal and its second derivative waveform (Accelerated 

Photoplethysmography - APG) an algorithm was developed using the MATLAB 

software to extract the identified features. A list of the extracted features is presented 

in Table 3.2, with a brief description on the characteristics of each feature. The 

extracted signal coordinates to calculate the features are presented in Figure 3.1.  

It is important to highlight that developing a robust algorithm towards the extraction 

of targeted signal coordinate is tedious due to the noise and motion artifacts present 

in the signal. This is a practical challenge towards the utilisation of PPG signals 

towards T2D estimation. The approach targeting short signal segments simplifies the 

feature extraction process. Unsupervised Deep Learning based approaches can be 

focused towards automatic feature extraction which requires the collection of a large 

database of PPG waveforms, which is outside the scope of this research.  
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Figure 3.1 Extracted data points from the PPG & APG waveform.  

19



Table 3.2 Feature selection results using ANOVA tests.  

Feature Description ANOVA Test 
(Diabetes)

ANOVA Test 
(Hypertension)

Physiological Features F Value P Value F Value P Value

Gender 1.313 0.256 1.929 0.15

Age 11.170 0.001 20.158 3.13E-08

Height Centimeters(cm) 0.267 0.607 0.078 0.925

Weight Kilograms(kg) 1.125 0.293 3.040 0.0517

BMI Weight(kg) / Height2 (m2) 0.569 0.454 3.989 0.0211

Body Fat (%) (1.2*BMI) + (0.23*Age) - 
(10.8*Gender) - 5.4

1.268 0.265 3.943 0.022

APG Signal Features

b/a Ratio; (for short: apg1) Increase Arterial Stiffness 0.845 0.362 4.414 0.0142

c/a Ratio; (apg2) Decreased Arterial Stiffness 1.957 0.167 1.824 0.166

d/a Ratio; (apg3) Decreased Arterial Stiffness 0.164 0.687 5.859 3.78E-03

e/a Ratio; (apg4) Decreased Arterial Stiffness 5.642 0.021 0.571 0.566

(b-c-d-e)/a Ratio; (apg5) Vascular Aging 0.053 0.818 6.429 2.26E-03

(b-e)/a Ratio; (apg6) Vascular Aging 0.201 0.656 2.969 0.0553

(b-c-d)/a Ratio; (apg7) Sensation of Coldness Treatment 0.827 0.367 6.602 1.93E-03

(c + d - b)/a Ratio; (apg8) Vascular Aging 0.827 0.367 6.602 1.93E-03

a-a Interval Complete Heart Cycle 0.205 0.652 0.498 0.609

(-d/a) Ratio Index Left Ventricular Overload 0.164 0.687 5.859 3.78E-03

PPG Signal Features

Systolic Amplitude Stroke Volume / Local Vascular 
Distensibility

0.166 0.685 4.622 1.17E-02

Pulse Area Total Area Under the PPG Curve 0.935 0.338 0.702 0.498

Inflexion Point Area (IPA) 
Ratio

Total Peripheral Resistance 0.309 0.580 0.186 0.831

Pulse Interval (PI) Complete Heart Cycle 0.137 0.712 0.449 0.639

PI / Systolic Amplitude 
Ratio; (PI_Sys)

Cardiovascular System 
Properties

6.291 0.015 2.305 0.104

Augmentation Index (AI) Vascular Tone / Endothelial 
Dysfunction

5.793 0.019 0.225 0.799

Adjusted AI; (adj AI) Vascular Tone / Endothelial 
Dysfunction

5.793 0.019 0.225 0.799

Large Artery Stiffness 
Index

Arterial Stiffness 0.368 0.547 4.567 1.23E-02

Rise Time (RT) Cardiovascular Disease 
Classification

0.016 0.899 5.102 7.53E-03
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3.1.3 Feature Selection 

The above extracted features are clearly identified and described in Elgendi et all [4] 

and Allen, John et al [5]. These features have been previously analysed, mainly 

towards the understanding and interpretation of the cardiovascular system. As 

identified in an earlier section, the cardiovascular system is affected by a variety of 

diseases. Hence it is important to uniquely identify the biomarkers towards T2D 

estimation. Assuming a normal distribution of the data, an ANOVA test with a 95% 

confidence interval was undertaken, focusing on the 51 healthy and 9 T2D only 

subjects. It was identified that the Age, Augmentation Index (AI), Adjusted AI, e/a 

Ratio and the ratio between the Pulse Interval to the Systolic Amplitude are suitable 

features towards T2D estimation.  

Previous studies [23-25], have also identified that the Augmentation Index (also 

known as the Reflection Index) can be used to detect endothelial dysfunction in 

diabetes patients. Endothelial dysfunction [26] occurs due to damages in the vascular 

endothelium affecting the operations of the vascular system. This may also lead to 

atherosclerosis, which is considered a major risk factor of cardiovascular disease. 

Hence, AI and Adjusted AI can be utilised towards T2D estimation, since 

hyperglycemia [27] is a major risk factor towards endothelial dysfunction. Through 

the ANOVA test it was identified that the ratio, Pulse Interval to its Systolic 

Amplitude is a unique feature for T2D estimation. This was previously identified by 

Poon et al [28] to understand the properties of the cardiovascular system. The e/a 

ratio can be used towards the estimation of T2D, which characterises the arterial 

stiffness as identified by Takazawa et al [29]. Takazawa et al demonstrated that the 

increase of the e/a ratio results in a decrease of arterial stiffness, and that e/a 

decreases with age. The Age was also identified as a key feature, which is mainly due 

to the higher probability of T2D among older subjects.  
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It should be highlighted that other features related to vascular ageing and arterial 

stiffness were not identified as predictors towards T2D, even though they represent 

the vascular system. To confirm that the selected features are unique towards T2D, a 

second ANOVA test with a 95% confidence interval was conducted focusing on 51 

healthy, 39 prehypertension and 28 hypertension subjects. The earlier test results 

were justified as the e/a ratio, AI, Adjusted AI and the ratio of pulse interval to its 

systolic amplitude were not identified as prominent features towards the estimation 

of hypertension. Hence it can be concluded that the e/a ratio, AI, Adjusted AI and the 

ratio of pulse interval to its systolic amplitude are unique features towards the 

estimation of T2D. However, Age was identified as a predictor towards both T2D & 

hypertension. Box plot graphs of the selected features are presented in Figure 3.2. 

Figure 3.2 Box plot graphs of selected features (Label 0: Healthy, Label 1: T2D). 

3.1.4 Machine Learning Models 

Machine learning algorithms can be effectively utilised to identify relationships and 

develop classification models on the target dataset. This analysis focused on 

supervised learning techniques [30] to carry out a binary classification problem, 

where healthy and T2D subjects were estimated. The area under the receiver 

operating characteristic (ROC) curve was the target evaluation metric. A variety of 

algorithms were analysed, and the best performing algorithms were identified. 
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Statistical algorithms such as the Naive Bayes classifier, Linear Discriminant 

Analysis (LDA), logic-based algorithms like Decision Trees and its variants Random 

Forest & Adaboost focusing on ensemble and boosting methods, Logistic Regression 

and Support Vector Machine (SVM) were evaluated in this study.   

The machine learning models were tuned with specific optimum hyper parameters 

using random search and stratified 10-fold cross validation used to optimise the 

target evaluation metric. Overfitting can be identified as a key phenomenon in 

machine learning which needs to be avoided, which is prominent in this case due to 

the relatively small number of data samples. Hence all the models were tuned 

ensuring the selection of suitable hyper parameters, and the best model selected. The 

scikit-sklearn python library was used to implement the machine learning models 

[31].  

The binary classification was carried out by balancing the target classes through 

under sampling, in order to avoid the class imbalance problem. The analysis was 

carried out based on 4 classification settings. Healthy versus T2D only subjects, 

healthy versus T2D including those with prehypertension, healthy versus T2D 

including those with prehypertension and hypertension. The final classification 

focused on assessing the robustness of the PPG towards T2D estimation. Hence only 

the PPG based features were selected and subjects below the age of 30 were 

excluded in order to ensure an even distribution across the age groups, with healthy 

and T2D subjects. Figure 3.3 presents the age distributions of the subjects in the final 

classification setting.   
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Figure 3.3 Matched age distribution of healthy and T2D subjects in experiment 4.  

3.2 Fasting Blood Glucose Prediction using PPG Features 

The interpretability of the biomarkers identified in the first section can be further 

enhanced. This can be carried out through establishing a relationship between the 

identified PPG features and a clinical measure towards T2D estimation. This 

approach focuses on identifying relationships between the extracted features and 

FBG levels. FBG can be identified as one of the main tests used by physicians 

toward the diagnosis of T2D. A dataset of PPG waveforms and FBG values were 

collected for the analysis. Previously identified features were extracted, and machine 

learning algorithms evaluated towards FBG prediction. Clinicians mainly focus on 

the FBG range of the patients towards diagnosis compared to the focus on the exact 

individual FBG measurement. This prompted the evaluation of the FBG prediction 

results based on the Clark’s error grid analysis.  
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3.2.1 Experiment Setup  

The experiment was conducted with the help of volunteer participants, who were 

informed about the experimentation process and consent obtained. Fasting Blood 

Glucose (FBG) measurements of the participants were obtained through a laboratory 

test performed by medical laboratory personnel. Next non-invasive PPG signals were 

recorded using a standard pulse oximeter (CMS50 Pulse Oximeter, sampling rate 

60Hz), where a PPG clip was attached to the fingertip of the subject who was seated 

in a resting position. 

Approximately signals of 2-3 minutes were recorded. Signal pulses in the middle of 

the recordings were utilised towards the analysis, to eliminate the motion artifacts 

during the attachment and removal of the PPG sensor. A total of 48 volunteers took 

part in the study, and the participants age, gender, prevalence of T2D, were also 

recorded. The use of Fasting Blood Glucose levels is expected to lower the impact 

from external effects resulting from food and medicine. However, it should be noted 

that the PPG and FBG measurements were not acquired simultaneously due to 

practical constraints, which resulted in a delay of a couple of minutes. The core focus 

of this research is to analyse parameters related to the vascular system of the body 

which does not change rapidly. Hence it is expected that the amplitude based features 

focussed in this research are not affected by such delays. However temporal features 

such as the heart rate would be affected by the delay. Data of 8 participants were 

removed due to the failure to adhere to the data collection protocol. The dataset 

description is presented in Table 3.3. 
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  Table 3.3 FBG dataset summary. 

3.2.2 Data Preprocessing  

The selected signals would be first filtered to remove noise as discussed in the 

previous section and similar features extracted. The signal segment towards the 

middle of the recording are focused for the analysis to remove motion artifacts in the 

beginning and the end of data collection. The focus of this approach is similar to the 

previous where short PPG segments would be extracted and analysed. In this 

analysis a 1 minute PPG segment was extracted and short (~2.1s) signal segments 

were obtained using a sliding window with 50% overlap. Skewness Signal Quality 

Index (SSQI) was identified, as explained in section 3.1.2 to be a valuable measure 

in establishing the quality of a PPG signal. This approach utilised the SSQI measure 

to filter erroneous short signal segments and identified PPG features were calculated.  

The extraction of features from the PPG waveform is a tedious task due to the noise 

and motion artefacts as identified previously. Based on the multiple short signal 

segment features extracted, a subject and feature wise anomaly detection was carried 

through the calculation of a Z-score. It was assumed that the feature values would 

represent a gaussian distribution. The anomalous signal segments were removed and 

the remaining segments were averaged for the analysis.  
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Feature Statistics

Age 43.4 ± 16.8

FBG 101.65 ± 26.04

FBG range 68 - 195



3.2.3 Machine Learning Models 

Different machine learning models were evaluated for the regression task to predict 

FBG values using the PPG features. Linear Regression, Ridge Regression, Lasso 

Regression, ElasticNet Regression, XGB Regression and Random Forest Regression 

models were selected for the analysis. All the previously identified PPG features 

except for the Large Artery Stiffness Index (LASI) was considered in the analysis. 

The LASI was omitted since it requires the subjects height for calculation which was 

not captured in the data collection. Age was the only physiological parameter 

included in the analysis. The rest were excluded due to data collection limitations.  

The final analysis consisted of 40 subjects and incorporated 17 PPG based features 

and the Age. Singular Value Decomposition was used for dimensionality reduction. A 

leave-one-out cross validation was carried out due to the relatively small sample size, 

where at each fold 39 samples were used for training and 1 sample was used for 

testing. The mean absolute error and standard deviation was recorded for both 

training and testing phases for each fold. The Clarkes Error Grid was identified 

suitable for the final evaluation of the results based on the variability of FBG 

measurements previously identified in section 2.1. A Matlab library was used to 

calculate the Clarke's Error Grid [36]. 

3.2.4 Replication of Previous Research for FBG Prediction 

It is important to benchmark and compare the results of the analysis. Hence, 

previously identified research by Moreno et al (2011) [16] was replicated. They 

focused on long PPG segments (1 minute) and identified features towards the 

prediction of glucose. An activity detection module was developed to select the best 

1 minute signal segment, which was not replicated since it requires additional 

datasets and measurements. However, the same 1 minute signal segment used in this 

research was selected for the replication. 
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The weight and BMI was not collected in this dataset, hence these features were not 

incorporated. However, the rest of the features; Age, mean Spo2, autoregressive 

coefficients of the signal, Kaiser-Teager energy based features, entropy and log 

entropy based features along with HR features were incorporated. The mean Spo2 

was calculated from the Spo2 measurement signal from the pulse oximeter. In total 

31 features were implemented out of the total 33 features used in their research. The 

same regression algorithms were evaluated using a leave-out-cross validation using 

the calculated features. The results were compared based on the identified evaluation 

metrics.  

3.3 Simulating Noise Contaminated PPG Signals for FBG Prediction 

The importance of developing a continuous T2D screening system for a routine 

lifestyle, was identified previously. PPG signals from wearable devices can be 

utilised effectively in this regard. However, the PPG signals captured through these 

devices are susceptible to a variety of different noise and motion artifacts, in contrast 

to carefully recorded PPG signals in a clinical setting. In order to evaluate the 

feasibility of short PPG segments, the prediction of FBG was carried out with noise 

and motion artifacts contaminated PPG signals. A PPG dataset capturing various 

activities was used to simulate the noise and motion artifacts in the collected FBG 

dataset.  

3.3.1 Dataset Description 

The TROIKA dataset [37] which captures PPG signals from a wristband under 

resting and treadmill running at different speeds was used to extract motion artifacts. 

The dataset captured two PPG signals, ECG and accelerometer data of 12 subjects. It 

should be noted that this dataset comprises of a wide variety of motion artifacts 

ranging from simple hand movements and more complex motion artifacts during 

running. Generally PPG signal datasets with clinical measures such as FBG, Blood 

Pressure are captured in controlled clinical environments, with very limited motion 
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artifacts present. Hence the focus on using an additional PPG dataset to simulate 

noise and motion artifacts.  

3.3.2 Simulating Noise & Motion Artifacts in PPG Signals 

The PPG signals captured from  standard pulse oximeters vary from signals captured 

through wearables such as wristbands. In general, a measured PPG signals is 

composed of the undistorted signal of interest with additive superimposed gaussian 

noise and motion artifacts [38]. Noise and motion artifacts were added to the FBG 

dataset in order to simulate signals captured under practical conditions. A 10 dB 

white gaussian noise was added to simulate the noise component [39].  

A 1 minute signal segment each, from the 12 subjects in the TROIKA dataset was 

extracted to simulate the motion artifact component. The 1 minute signal comprised 

of a 30s rest period with hand movements and another 30s period of running. Both 

these activities were used in the simulation in order to better represent the practical 

conditions. Sebastian et al [40] used the TROIKA dataset to evaluate different 

approaches to model motion artifacts. They identified that the dynamic variance 

moving average model was suitable to represent motion artifacts. This model was 

replicated and the motion artifacts was extracted from the target 1 minute signal 

segment. The motion artifacts of the 12 subjects were randomly combined with the 

40 subjects of the collected FBG dataset. The final simulated PPG signals comprised 

of the motion artifacts and the noise components. The original PPG signal and the 

simulated PPG signal of a subject is presented in Figure 3.4. The simulated signals 

were next used towards FBG prediction as explained in the previous section. 
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Figure 3.4 Simulated PPG signal with noise & motion artifacts (Top: Original clean PPG signal, 
Bottom: PPG signal contaminated with noise and motion artifacts). 
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Chapter 4 

RESULTS & DISCUSSION 

This section aims to critically analyse the results obtained in the conducted sets of 

experiments, in order to estimate T2D, predict FBG based on the identified features 

and evaluate the feasibility of short PPG segments based analysis in a routine 

everyday setting. The limitations of the current study would also be analyzed for 

better understanding.  

4.1 Biomarker Identification & T2D Classification 

The conducted ANOVA tests were able to identify features unique towards T2D 

estimation. The e/a ratio, AI, Adjusted AI and the ratio of pulse interval to its systolic 

amplitude were the selected PPG features, along with the age of the subject, which 

were used for the classification of T2D. Some of these features were also identified 

in previous research relating to diabetes and endothelial dysfunction as explained in 

section 3. It is important to highlight that Age was identified as a unique feature due 

to the high prevalence of diabetes among elderly populations. However, it is 

important to focus on other robust features for classification.  

Sensitivity and specificity can be identified as important metrics related to diagnosis 

tests frequently used in the medical domain. Sensitivity focuses on the ability of the 

classifier to detect a true positive (the diabetes class). It is important to have a high 

sensitivity in order to detect all diabetes subjects, as the failure in detection would 

lead to adverse consequences identified previously. However, generally higher 

sensitivities would lead to lower specificity values which mainly focus on the 

accuracy of predicting true negatives (the healthy class). It is important to balance 

these two metrics in order to design an effective diagnosis test. The ROC curve 
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provides valuable insights on how the decision thresholds of the classifiers can be 

adjusted in order to obtain target sensitivity and specificity values. 

The T2D classification results are presented in Table 4.1. The Decision Trees and 

LDA classifiers achieved an accuracy of 83% and 82% respectively in classifying 

healthy subjects from T2D subjects. The LDA classifier achieved a higher sensitivity 

(89%) compared to the Decision Tree classifier (78%). However, the Decision Tree 

classifier achieved a better specificity value 89% vs 56%. It is important to carry out 

these tests with additional samples of people with T2D, in order to enhance the 

confidence of the results. The classification of healthy subjects from T2D only and 

T2D subjects with prehypertension & hypertension provided more confident results 

due to relative larger sample size.  

The SVM technique estimated T2D with the presence of prehypertension with an 

accuracy of 71%, whereas LDA achieved an accuracy of 79% for estimating T2D in 

the presence of both prehypertension & hypertension. The third experiment captured 

the real-world scenario of overlapping disease combinations. LDA achieved 75% and 

67% for sensitivity and specificity respectively in the third experiment. The SVM 

classifier achieved a slightly better sensitivity of 78% with an accuracy of 74% in the 

area under the ROC curve. It is important to focus on developing machine learning 

models capable of identifying T2D in practical environments.  

The evaluation of the robustness of PPG signals for T2D estimation is focused in the 

final experiment. The feature Age was excluded from the analysis to solely focus on 

the selected physiological features. The Decision Tree classifier achieved an 

accuracy of 70% verifying the suitability of the focus on PPG signals for T2D 

estimation. Although, it is important to highlight that the sensitivity dropped to 67% 

when Age was removed as a feature.  
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Table 4.1 T2D estimation results. (NB: Naive Bayes, LR: Logistic Regression, AB: Adaboost 
Classifier, RF: Random Forest, DT: Decision Tree, SVM: Support Vector Machine Linear 
Kernel ) 

Experiment Classification 
Algorithm

ROC F1 Precision Recall 
(Sensitivity)

Specificity

Normal (n = 9) 
vs 

Diabetes Only  
(n = 9) 

(3-fold stratified 
cross validation)

NB 0.54 ± 0.18 0.24 ± 0.17 0.28 ± 0.21 0.22 ± 0.16 0.67 ± 0.27

LR 0.33 ± 0.16 0.5 ± 0.14 0.41 ± 0.07 0.67 ± 0.27 0.11 ± 0.16

AB 0.78 ± 0.16 0.67 ± 0.24 1.0 ± 0.0 0.56 ± 0.31 1.00 ± 0.0

RF 0.78 ± 0.18 0.67 ± 0.24 1.0 ± 0.0 0.56 ± 0.31 1.0 ± 0.0

DT 0.83 ± 0.14 0.79 ± 0.21 0.92 ± 0.12 0.78 ± 0.31 0.89 ± 0.16

SVM 0.63 ± 0.21 0.61 ± 0.2 0.51 ± 0.13 0.78 ± 0.31 0.33 ± 0.00

LDA 0.82 ± 0.14 0.76 ± 0.13 0.67 ± 0.12 0.89 ± 0.16 0.56 ± 0.16

Normal (n = 25) 
vs 

Diabetes with 
Prehypertension 

 (n = 25) 
(10-fold stratified  
cross validation)

NB 0.54 ± 0.23 0.03 ± 0.09 0.03 ± 0.08 0.03 ± 0.1 0.90 ± 0.30

LR 0.66 ± 0.26 0.69 ± 0.04 0.53 ± 0.06 1.0 ± 0.0 0.08 ± 0.17

AB 0.61 ± 0.25 0.52 ± 0.19 0.56 ± 0.27 0.57 ± 0.28 0.55 ± 0.33

RF 0.60 ± 0.29 0.47 ± 0.35 0.50 ± 0.38 0.48 ± 0.37 0.75 ± 0.31

DT 0.53 ± 0.28 0.38 ± 0.32 0.44 ± 0.39 0.37 ± 0.34 0.82 ± 0.24

SVM 0.70 ± 0.22 0.52 ± 0.3 0.48 ± 0.28 0.62 ± 0.38 0.55 ± 0.37

LDA 0.69 ± 0.21 0.68 ± 0.16 0.73 ± 0.23 0.72 ± 0.25 0.63 ± 0.34

Normal (n = 32) 
vs 

Diabetes with 
Prehypertension & 

Hypertension  
(n = 32) 

(10-fold stratified  
cross validation)

NB 0.69 ± 0.21 0.03 ± 0.09 0.03 ± 0.08 0.03 ± 0.1 0.90 ± 0.30

LR 0.67 ± 0.23 0.67 ± 0.02 0.51 ± 0.02 1.0 ± 0.0 0.03 ± 0.08

AB 0.69 ± 0.14 0.54 ± 0.16 0.58 ± 0.17 0.52 ± 0.19 0.62 ± 0.18

RF 0.74 ± 0.16 0.59 ± 0.23 0.53 ± 0.20 0.69 ± 0.28 0.50 ± 0.24

DT 0.68 ± 0.16 0.60 ± 0.25 0.58 ± 0.25 0.68 ± 0.32 0.58 ± 0.30

SVM 0.74 ± 0.17 0.69 ± 0.10 0.65 ± 0.15 0.78 ± 0.18 0.53 ± 0.23

LDA 0.79 ± 0.15 0.71 ± 0.15 0.74 ± 0.19 0.75 ± 0.23 0.67 ± 0.30

Only PPG Signal 
Features 

 Target subjects 
with age >= 30. 
Normal (n = 31) 

vs 
Diabetes with 

Prehypertension & 
Hypertension  

(n = 31) 
(10-fold stratified 

cross  
validation)

NB 0.45 ± 0.20 0.05 ± 0.15 0.04 ± 0.12 0.07 ± 0.20 0.90 ± 0.30

LR 0.43 ± 0.24 0.40 ± 0.25 0.35 ± 0.22 0.47 ± 0.31 0.40 ± 0.36

AB 0.56 ± 0.21 0.47 ± 0.28 0.46 ± 0.29 0.53 ± 0.34 0.55 ± 0.37

RF 0.51 ± 0.17 0.41 ± 0.28 0.47 ± 0.36 0.44 ± 0.34 0.65 ± 0.40

DT 0.70 ± 0.22 0.66 ± 0.27 0.75 ± 0.29 0.67 ± 0.33 0.82 ± 0.19

SVM 0.42 ± 0.25 0.51 ± 0.29 0.40 ± 0.23 0.73 ± 0.42 0.27 ± 0.42

LDA 0.64 ± 0.15 0.56 ± 0.15 0.56 ± 0.18 0.58 ± 0.16 0.52 ± 0.22
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4.2 Analysis of Fasting Blood Glucose Prediction Using PPG Features 

This research focuses on analysing features related to the vascular system in order to 

estimate T2D. The previous approach focused on identifying such biomarkers. 

However, the interpretability of the results can be further enhanced through 

establishing a relationship between clinically used measures for T2D diagnosis and  

PPG features. Hence, this analysis evaluates the possibility of predicting FBG 

measurements using PPG features.  

Through the conducted leave-one-out cross validation, the test samples of each 

iteration was used to evaluate the accuracy of FBG prediction. A previous research 

focussing on long PPG segments was replicated to compare the results. The mean 

absolute error and standard deviations of the averaged train and test sets are 

presented in Table 4.2. However due to the inherent variation in blood glucose levels, 

the accuracy is analyzed using the Clarke’s error grid. The percentage and number of 

points in each region of the grid is presented in Table 4.3.  

Table 4.2 FBG Prediction Using PPG Features. 

Experiment Regression Algorithm Train MAE Test MAE

FBG Prediction 
(SVD for Dimensionality 

Reduction)

Linear Regression 14.36 ± 0.79 19.85 ± 18.69

Ridge Regression 14.43 ± 0.79 19.46 ± 18.32

Lasso Regression 15.0 ± 0.69 18.42 ± 17.47

ElasticNet Regression 15.27 ± 0.66 17.95 ± 17.22

XGB Regression 0.41 ± 0.05 22.07 ± 21.75

Random Forest Regression 8.3 ± 0.82 20.41 ± 20.27

Replication Task 
Moreno et al 2011 

(Full Features)

Linear Regression 7.67 ± 0.68 42.93 ± 39.02

Ridge Regression 12.32 ± 0.55 22.68 ± 25.38

Lasso Regression 13.84 ± 0.64 19.02 ± 19.57

ElasticNet Regression 13.86 ± 0.64 18.76 ± 19.38

XGB Regression 0.29 ± 0.03 16.25 ± 17

Random Forest Regression 6.39 ± 0.69 16.58 ± 15.13
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The experiment which replicated Moreno et al’s research achieved the best results 

with XGB Regression where 75% of the points were classified in Region A and 25% 

points were classified in Region B. For the same experiment Random Forest 

achieved 72.5% in region A and 27.5% in region B. It is important to highlight that 

no points were present in regions C, D, E which leads to adverse consequences. 

However Moreno et al achieved 87.7% in region A and 10.3% in region B in their 

original research. The reduction in accuracy could be due to the fact that weight and 

BMI were not available in this experiment. Also in the original research a separate 

anomaly detection module was implemented in order to identify the best 1 minute 

signal segment.  

Table 4.3 FBG Prediction Clarke’s Error Grid Results 
(Percentage & number of points in each region are presented). 

Experiment Regression Algorithm A B C D E

FBG Prediction 
(SVD for 

Dimensionality 
Reduction)

Linear Regression 67.5% (27) 30% (12) 0% (0) 2.5% (1) 0% (0)

Ridge Regression 70% (28) 27.5% (11) 0% (0) 2.5% (1) 0% (0)

Lasso Regression 75% (30) 22.5% (9) 0% (0) 2.5% (1) 0% (0)

ElasticNet Regression 75% (30) 22.5% (9) 0% (0) 2.5% (1) 0% (0)

XGB Regression 57.5% (23) 40% (16) 0% (0) 2.5% (1) 0% (0)

Random Forest Regression 57.5% (23) 40% (16) 0% (0) 2.5% (1) 0% (0)

Replication of 
Moreno et al 

2011 
(Full Features)

Linear Regression 30% (12) 67.5% (27) 2.5% (1) 0% (0) 0% (0)

Ridge Regression 65% (26) 30% (12) 2.5% (1) 2.5% (1) 0% (0)

Lasso Regression 70% (28) 27.5% (11) 0% (0) 2.5% (1) 0% (0)

ElasticNet Regression 67.5% (27) 30% (12) 0% (0) 2.5% (1) 0% (0)

XGB Regression 75% (30) 25% (10) 0% (0) 0% (0) 0% (0)

Random Forest Regression 72.5% (29) 27.5% (11) 0% (0) 0% (0) 0% (0)
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The short PPG segments base features in this research was able to achieve 75% in 

region A and 22.5% in region B for both Lasso Regression and ElasticNet 

Regression. However, both the models predicted 1 FBG sample (2.5%) in region D 

which is unfavourable.  

When the results of the two approaches are compared it can be seen that Moreno 

2011 performed slightly better compared to the proposed method. However the 

performance was very similar for 39 samples, only difference being the 1 sample 

which was classified in region D. The integration of additional features such as 

weight, BMI, Spo2 and larger training data could enhance the accuracies further. The 

Clarke’s error grids to the above identified best scenarios are presented in Figure 4.1 

& 4.2. 

 
Figure 4.1. Clarkes Error Grid results - short PPG segments analysis. (a) ElasticNet Regression 

Model, (b) Lasso Regression Model. 
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Figure 4.2. Clarke’s Error Grid results - Moreno 2011. (a) XGB Regression Model, (b) Random 

Forest Regression Model. 

It should also be highlighted that blood glucose values greater than 150 mg/dL were 

less which limits the regression models to learn the prediction in that region. This 

could be observed in the above figures where such blood glucose values were 

predicted poorly.  
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4.3 Analysis of Noise & Motion Artifact Simulated PPG for FBG Prediction  

Noise and motion artifacts were simulated in order to evaluate the feasibility of using 

short PPG segments for T2D estimation. The simulated signals were used to predict 

FBG values. The results based on short PPG segments and the replicated research of 

Moreno 2011 is presented in Table 4.4 & 4.5.  

Table 4.4 FBG prediction using noise & motion artifact simulated PPG. 

The results of the two approaches were similar where 70%, 27.5% and 2.5% of the 

predictions were in regions A, B and D respectively. The Clarke’s Error Grids for the 

two approaches are presented in Figure 4.3 & 4.4. Upon analysing the grids and the 

mean absolute test errors it can be identified that the short PPG segments based 

analysis has a lower mean absolute error. However, the accuracy has dropped 

respective to the previous analysis where 75% of the samples were in region A for 

both the approaches. 

Experiment Regression Algorithm Train MAE Test MAE

FBG Prediction on Simulated 
PPG Signals.  

(SVD for Dimensionality 
Reduction)

Linear Regression 13.1 ± 0.56 18.59 ± 20.52

Ridge Regression 13.02 ± 0.55 18.28 ± 20.44

Lasso Regression 13.03 ± 0.57 16.49 ± 19.37

ElasticNet Regression 13.38 ± 0.58 16.26 ± 19.05

XGB Regression 0.63 ± 0.06 23.67 ± 26.07

Random Forest Regression 10.48 ± 0.64 20.35 ± 20.97

Replication Task based on 
Simulated PPG Signals. 

Moreno et al 2011

Linear Regression 9.48 ± 0.95 55.24 ± 34.55

Ridge Regression 14.27 ± 0.75 21.98 ± 18.41

Lasso Regression 13.82 ± 0.69 18.95 ± 18.83

ElasticNet Regression 13.8 ± 0.69 17.8 ± 18.72

XGB Regression 0.23 ± 0.03 19.06 ± 22.91

Random Forest Regression 7.75 ± 0.9 18.87 ± 21.05
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Table 4.5 FBG prediction Clarke’s Error Grid results for noise & motion artifact simulated 
PPG (Percentage & number of points in each region are presented). 

It is important to highlight that the ElasticNet Regression model performed well in 

both the clean PPG and noise contaminated PPG experiment for the short PPG 

segments based approach. The model uses a combination of L1 and L2 regularisation 

which is suitable to ensure the prevention of overfitting.  

Experiment Regression Algorithm A B C D E

FBG Prediction 
(SVD for 

Dimensionality 
Reduction)

Linear Regression 62.5% (25) 37.5% (15) 0% (0) 0% (0) 0% (0)

Ridge Regression 62.5% (25) 37.5% (15) 0% (0) 0% (0) 0% (0)

Lasso Regression 67.5% (27) 32.5% (13) 0% (0) 0% (0) 0% (0)

ElasticNet Regression 70% (28) 27.5% (11) 0% (0) 2.5% (1) 0% (0)

XGB Regression 70% (28) 27.5% (11) 0% (0) 2.5% (1) 0% (0)

Random Forest Regression 67.5% (27) 30% (12) 0% (0) 2.5% (1) 0% (0)

Replication of 
Moreno et al 

2011 
(Full Features)

Linear Regression 15% (6) 77.5% (31) 7.5% (3) 0% (0) 0% (0)

Ridge Regression 60% (24) 37.5% (15) 0% (0) 2.5% (1) 0% (0)

Lasso Regression 65% (26) 32.5% (13) 0% (0) 2.5% (1) 0% (0)

ElasticNet Regression 65% (26) 32.5% (13) 0% (0) 2.5% (1) 0% (0)

XGB Regression 70% (28) 27.5% (11) 0% (0) 2.5% (1) 0% (0)

Random Forest Regression 67.5% (27) 30% (12) 0% (0) 2.5% (1) 0% (0)
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Figure 4.3. Clarke’s Error Grid results with noise simulated PPG - short PPG segments 
analysis. (a) ElasticNet Regression Model, (b) XGB Regression Model. 

 

Figure 4.4. Clarke’s Error Grid results with noise simulated PPG - Moreno 2011. (a) XGB 
Regression Model, (b) Random Forest Regression Model. 
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4.4 Limitations of the Analysis 

The quality of data is of utmost importance to machine learning. This research 

focused mainly on an open source Chinese dataset which included PPG signals of 

healthy, diabetes and hypertension subjects. Since the core focus of the dataset 

wasn’t diabetes, the number of diabetes subjects were relatively small. It should be 

noted that this was the only open source dataset available. The availability of large 

datasets is limited in medicine, which highlights the importance of well funded and 

equipped clinical trials. The limitations of the dataset size was countered through the 

use of different cross validation strategies. Data intensive models such as Neural 

Networks were omitted from the study and necessary precautions undertaken to 

avoid overfitting of models.  

The second part of the research focused on predicting FBG using PPG features. The 

research protocol focused on collecting PPG signals after the standard medical tests 

were conducted by medical professionals to obtain FBG. Hence there is a time delay 

between the FBG and PPG recordings. However, this is expected to be negligible 

since extracted features are mainly related to vascular parameters which do not 

change rapidly. The collected FBG values were not evenly spread across the possible 

spectrum, which resulted in lower accuracy of the predictions in the range greater 

than 150mg/dL. Further data collection should be carried out to ensure that the 

sufficient data points are available to predict the entire FBG spectrum accurately.  

There is inherent noise due to motion artifacts, skin colour and pressure on the PPG 

sensors. Necessary steps were carried out to minimise the noise. The feature 

extraction can also be subjective due to the noise present in the PPG signal. Even 

though necessary control mechanisms were deployed to extract the features, it would 

be interesting to explore automatic feature extraction techniques in machine learning 

in future research. However this might affect the explainability of the features.  
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The data collection protocol can be improved further incorporating variables such as 

the duration of diabetes, medication taken etc. A longitudinal study considering the 

effects of medications would provide valuable insights on the disease progression 

and be useful in T2D estimation. The datasets analyzed in this study does not possess 

the information regarding the medications and disease duration which is a limitation. 

Hypertension was the only other overlapping disease analyzed in this study. 

However, there are many other diseases with overlapping characteristics to diabetes 

which need to be analyzed further. The extracted features were assumed to be in a 

normal distribution for the application of statistical tests. 

Noise and motion artifacts were simulated in order to analyse the effect in a routine 

everyday environment. However this doesn’t capture any physiological changes 

which might affect the blood glucose values due to the routine activities. A dataset 

comprising of multiple glucose level readings captured in a non-clinical environment 

along with PPG signals would be ideal in this regard. It is also important to note that 

in this research FBG levels were analyzed using PPG features, only to evaluate the 

feasibility of the proposed approach. In a commercial application  the identified 

features could be utilised to predict blood glucose levels as a step towards T2D 

estimation.  
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Chapter 5  

CONCLUSION & RECOMMENDATION 

This research mainly focused on evaluating the feasibility of using short PPG signals 

towards T2D estimation. We evaluated morphological features of the signals and 

physiological characteristics in order to identify suitable biomarkers. These 

biomarkers are mainly related to the vascular system of the body. The selection of 

these features enhanced the explainability of the results compared to research which 

focus on standard signal characteristics as features. 

The first part of the research conducted two ANOVA tests, and identified that the e/a 

ratio, Augmented Index, Adjusted Augmented Index and the ratio of pulse interval to 

its systolic amplitude are unique features for T2D classification. The e/a ratio 

provides insights regarding the arterial stiffness, the Augmented Index & Adjusted 

Augmented Index provides information regarding the endothelial dysfunction. The 

pulse interval to its systolic amplitude is a property of the cardiovascular system. 

These identified features provide an insight on the biological relationships between 

the vascular characteristics and T2D. The classification results identified in the 

previous section shows promise in utilising PPG signals towards T2D estimation. It 

is important to note that the accuracies presented are for the cross validation only. 

Hence, in order to improve the confidence of the results it is important to validate 

with additional subjects.  

The system can be improved further by identifying additional PPG features towards 

T2D estimation. Although biomedical signal processing approaches [32, 33] are 

present to extract features from the PPG signal, it is difficult due to the motion 

artifacts, noise and practical constraints. These techniques require a great deal of 

parameter tuning and threshold setting which is hard to implement practically. Hence 

it would be beneficial to explore automatic feature extraction approaches utilising 
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latest machine learning techniques in future. This would ensure the development of a 

robust T2D estimation system.  

The previous research related to PPG signals focused on analysing long signal 

segments. Moreno et al [13] achieved an accuracy of 69.4% focusing on HRV and 

cepstral analysis. Ballinger et al [6] achieved an accuracy of 84.51% (area under the 

ROC curve), where they combined medical health records, step counts and 

continuous heart rate measurements from the PPG signals. Our approach achieved an 

accuracy of 79% in estimating T2D at a practical environment setting (utilising short 

PPG signals) where T2D subjects with hypertension and prehypertension was also 

present. An 83% accuracy was obtained when healthy and T2D only subjects were 

present. These results suggest that a potential exists in utilising short segments of 

PPG signals towards the development of a system to estimate T2D.  

The second part of the research focused on predicting FBG values using PPG 

features. It is important to identify clinical measures used for diabetes diagnosis and 

link with the target PPG features. This would provide further intuition on how PPG 

features possess information towards T2D estimation. The regression results 

identified that FBG values could be predicted, with an accuracy of 75% in region A 

and 22.5% in region B of the Clarke’s Error Grid using Lasso Regression & 

ElasticNet Regression. These results were comparable with the replicated previous 

research by Moreno et al. However 1 FBG sample (2.5%) was classified into region 

D which was undesirable. The accuracy of the models can be further improved with 

more training data and better spread of data across the FBG spectrum. The additional 

readily available physiological variables such as BMI, height, weight can also be 

explored in future for better results.  

The replicated research focussed on utilising features extracted from 1 minute PPG 

signals compared to the short (~2.1) PPG segment approach in this research. The 
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comparability of the results indicate the suitability of using short PPG segments 

based features for T2D estimation. A further analysis was carried out to simulate 

noise and motion artifacts which are present in routine everyday environments 

compared to controlled clinical environments. The accuracy was reduced to 70%, 

27.5%,  2.5% in regions A, B, D respectively in the Clarke’s Error Grid. However, 

the accuracy of short PPG segments based analysis and the replicated results were 

similar. Thus the proposed approach did not show improvement towards predictions 

focussing on noisy PPG signals. The focus on short PPG segments however, led to 

the analysis of a set of features with an established biological meaning, which 

enhanced the interpretability of the results. It is important to note that many previous 

research have focused on a variety of denoising techniques for different 

physiological signals which can be leveraged for PPG signals [41, 42].  

Both the analyzed approaches can be combined in order to provide better estimates 

and understanding. The FBG estimates can be used as an additional feature towards 

the T2D classification carried out in the first approach. This analysis wasn’t carried 

out in this research since the two approaches were based on two distinct datasets 

collected under different conditions. This would be interesting to analyse in future.  

PPG signals in wearable devices can be utilised effectively for the development of a  

continuous T2D surveillance system. The T2D estimation in such a system can be 

enhanced by focussing on periodic readings and developing models for better 

predictions focussing on richer longitudinal PPG data. The development of a T2D 

estimation system is a hard task due to the uncertainty and large amounts of 

unknown variables affecting the state of diabetes and vascular characteristics. This 

research evaluated the feasibility of using short PPG segments for T2D estimation. 

The research shows promising results. However, it is important to analyse additional 

variables and overcome the limitations discussed in the previous section, in order to 

understand the biomarkers and their variability due to different factors. This would 
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enable the development of a low cost, convenient, non-invasive T2D estimation 

system suitable for a routine everyday environment. 
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